Automatic control
Mid-term Exam 2018-2019
Allowed time: (2h)

Answer All the Following Questions [30 Marks]

Q1) a) The figure below shows a block diagram of a space vehicle attitude control system where R and Y are the Laplace transforms of the reference (or desired) and actual attitude angles respectively. Determine the values of K_{P} and K_{D} to yield a settling time of 0.5 second and 20% overshoot in the closed-loop system for a unit-step input.
[5 Marks]

b) Determine the step, ramp, and parabolic error constants of the following unity-feedback control system.
[5 Marks]

$$
G(s)=\frac{K(1+2 s)(1+4 s)}{s^{2}\left(s^{2}+s+1\right)}
$$

Q2) a) The block diagram of a motor-control system with tachometer feedback is shown in the following figure. Find the range of values of K_{t} so that the system is stable. Determine the critical value $K_{t c}$ of K_{t} and the frequency of sustained oscillation in this case.
[5 Marks]

b) Using Mason's rule, find the transfer function, $T(s)=Y(s) / R(s)$, for the system represented in the following Figure.
[5 Marks]

Q3) Sketch the root loci for the system shown in the following Figure.
[10 Marks]

